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An approach is developed in accordance with which the rheological behaviour of non-Newtonian fluids 

is governed by the non-linear kinetics of processes involving the restoration and disruption of bonds 

between the structural elements of the medium. The corresponding kinetic equations are used as 

closing relationships in describing the unsteady motions of such fluids in the gap between the cylinders 

of a rotational viscosimeter. It is shown, by a numerical analysis of the method proposed, that the self- 

excited and stochastic oscillations when measuring the viscosity of non-Newtonian fluids may be the 

result of the joint action of the non-linear kinetics of structural changes in the fluid and the inertial 

properties of the viscosimeter. 

EXPERIMENTAL investigations of the rheological properties of fluids with a complex internal structure (clay 
suspensions, paraffin and polymer melts, heavy crude oils, etc.), carried out using a rotating cylinder 
viscosimeter, show that, in a number of cases, at a constant rate of rotation of the viscosimeter motor the 
magnitude of the measured tangential stress may vary with time in a quite complex manner. A qualitative 

description of this effect has been given in [l]. It has been shown experimentally [2] that, under certain 
conditions, it is possible to realize an oscillatory outflow of a polymer melt from a capillary tube at a 
constant velocity of the displacement piston. This phenomenon has come to be known as elastic 
turbulence and is explained, in particular, by the hypothesis of the slip of the fluid close to the wall of the 

viscosimeter or the capillary [3-S]. 
The dependence of the rotational viscosimeter readings on time, obtained during measurements of the 

tangential stress R of a paraffin (nonadecane) melt at a temperature close to its temperature of 

crystallixation,$ is shown in Fig. 1. The characteristics of the irregular oscillatory process, that is, the 
correlation scale and the Kohnogorov entropy were calculated for the curve shown. The correlation 
integral was calculated using the formula [6] 

CM(r) = k jr ,gt~Y(r - II Rr - Rp II 1 

where N is the total number of points in the processed time interval, H is the Heaviside function, r is the 
length of a cell in phase space, R, is a point of the M-dimensional phase space with coordinates 

W,). . . . , R(t, +(M+l)Af)} and II R, - R, II is the distance between the ith and q th points of phase space. 
The correlation scale was calculated using the formula [6] 

w = lnC&f(r) /lnr 

~Prikl. Mot. M&h. Vol. 51, No. 1, pp. 71-76,1993. 
$The experiment was carried out by S. A. Konev. 
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Fm.2. 

The dependences of the correlation function C,(r> and the correlation scale W on the number of phase 

variables M are shown in Fig. 2(a, b), respectively. The lower bound for the Kohnogorov entropy was 
calculated using the formula (71 

Calculations show that K = 0.1 in the given case. This means that the Kolmogorov entropy is positive. 

This suggests that the process shown in Fig. 1 is chaotic. It is seen in Fig. 2(b) that, when M = 4, the value 

of the correlation scale IV reaches a stationary level. This meaus that the chaos is determinate and that the 

rn~~urn number of variables required to model the process of the defo~ation of the paraffin melt in 
the rotational viscosimeter is equal to four. Consequently, the process under consideration can be adequ- 
ately described by a fourth-order non-linear dynamic system. This suggests the idea of the fundamental 

possibility of the existence of certain finite kinetics for the processes involved in the change in the internal 

structure of the fluid. 
The proposal has been put forward in [8] that structural rearrangements occurring during the flow 

process are the cause of the occurrence of elastic turbulence. Linear kinetic equations were used in ]9, 101 
in order to simulate the processes involved in the breakdown and restoration of the structure. It was 
shown that many of the special features of the steady-state rheological characteristics of a fluid can be 
satisfactorily described within the framework of such an approach. It was proposed in [l] that non-linear 
models, which generalized classical models of the “predator-prey” type, should be used when describing 
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the kinetics of the restoration-disruption processes. It was noted that new possibilities for describing 
complex, unsteady (self-excited and chaotic) conditions are opened up when using non-linear models in 
addition to their ability to describe steady-state rheological characteristics, 

In what follows we present a simple non-linear kinetic equation for describing the processes involved 
in the restoration and disruption of the bonds between the structural elements of the medium. This is 
used when simulating the motion of the fluid in the gap between the cylinders of a rotational viscosimeter. 

Assuming that the width of the gap in the viscosimeter is small compared with the radii of 
the cylinders, let us consider the following planar scheme for the flow of the fluid between two 
parallel infinitely extending plates separated from one another by a distance h. The lower fixed 
and upper moveable plate also possess sufficiently large areas so that it is possible to neglect 
edge effects. The upper plate is brought into translational motion by means of a spring, one 
end of which is connected to the plate while the other moves at a constant velocity u,. 

The shear flow of the fluid between the plates is described by the equation 

a~ a 

5T=7P C), O<y<h 

(u, p and p are the velocity, density and viscosity of the fluid, respectively). The equation of 
motion of the upper plate can be written in the form 

d’x av 
m-- Qc(- 

d*t I ay Y=h 
tfr=o 

where n is the absolute elongation of the spring, f is the coefficient of rigidity of the spring and 
m and Q are the mass and area of the upper plate. The system of equations of motion of the 
fluid and the plate (1) and (2) is closed using boundary and kinematic conditions of the form 

v(0, r) = 0, v(h, t) = v. - dx/dr (3) 

As the quantitative characteristic of the degree of structuring of the fluid, which determines 
its viscosity, we shall use the concentration of bonds s which are disrupted during the flow 
process. The dependence of the viscosity of the fluid on the concentration s may be taken in 
the form 

cc@) = PO 
r - E* 1-r; - 
1 - .& - iJ* 1 - t* (4) 

E = exp(-us8), [a = exp(-osP,) 

where a and j3 are certain positive constants. In accordance with this parametrization, the 
viscosity of the fluid is the greatest and equal to fl 1,4= & at a concentration of disrupted bonds 
equal to zero. As more bonds become disrupted (that is, as s increases), the viscosity decreases 
exponentially and reaches its minimum value ,u I_ = fi when all of the bonds are disrupted 
(S = So). 

Under shear flow, the bonds between the structural elements of the medium can be 
disrupted and restored. In order to describe the bond disruption and restoration process, let us 
introduce the following non-linear kinetic equation 

ds/dt = -Cr (s - s,[l - exp(-Ts&s) ;*)I) (5) 

where a and y are positive constants and ti = aUl& is the shear rate. In accordance with this 
equation, the concentration of disrupted bonds at a constant value of the shear rate must tend 
to a certain equilibrium value S, which is determined using the formula 
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$9 = S, [l - w+-v0@0 )e* >I 

It is seen from this that, as d increases, the concentration of disrupted bonds increases and 
approaches its maximum value s. exponentially. Moreover, the expansion of the right-hand 
side of Eq. (5) in series 

s*[l - exp(-73&s) G’)] = s,rs&s) G* 

shows that, at small values of the shear rate, the rate of bond d~ruption is directly proportional 
to the intensity of the viscous di~ipation of energy in the flow. 

After intr~ucing the ~~e~ionless variables 

the system of equations (l)-(5) acquires the form 

1 - exp(48,) 
K = p&h2 

PO - c1* 

dr2 
- w9g +FX=O 

Tj=1 

V(O,7)=0, 1/(1,r)=l -3 (6) 

v (9 = P + exp(-9) 

as 
G 

= -s +A[1 - exp(-GSv(S) C ++I 

Ofti0 - &I f 
h= 

mak(l - exp(-A@)) 
, F=- 

ma? ’ 

P = CI* - Rio =pf--4’) 

Cl0 - II* 

A=&+#, G= <17m!! -‘* 
1 - exp(-Afl) 

The formulation of the problem which has been given can be simplified when account is 
taken of the smallness of the parameter K(K -h2). In this case, one can neglect the term 
&Vl& in the fist equation (6) and then 

T = v(s) aV/aq = const 

The solution of this equation is not unique. It can be constructed as a set of spatial structures, 
“domains” 112,131, which are regions with different values for the concentration of disrupted 
bonds sj and shear rates (~/~)j (the con~ntration of disrupted bonds and the shear rate are 
independent of 17 within each domain). In this case, the boundary conditions (the fourth and 
fifth relationships of (6)) are satisfied if 

t( av 
I=1 

--f~-),Zj = 1 -$, 6 Zj = 1 
/=I 

where J is the number of domains and Zj is the thickness of the jth domain. 
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The system of equations (6) then reduces to a non-linear dynamic system of the form 
d2X 

--ABtFx=o, B=(l- 
d? -$) (jil l,f;S) 1-l 

i 
dSi B2 

- = 4j + A [ 1 - eXp(-GSj 
dr 

-1 
V<Si> 

V(Sj) = P + exp(-S/), j = 1, . . . . J 

It has been shown above that, according to the experimental data, it is sufficient to use a 
fourth-order non-linear dynamic system to simulate deterministic chaos in a rotational 
viscosimeter. System (7) was therefore solved numerically for the case of two domains. Here, 
the following values of the dimensionless parameters were fixed: /3 = 0.25, F = 17, A = 4, P = 0, 
1, 2, = Z, = 0.5 and /3= 10. The effect of the dimensionless value of the shear rate E = dG on 
the structure of the solutions of the system was investigated. 

The results of the calculations are summarized in Fig. 3 where the dependence of the 
dimensionless tangential stress T on E is shown. The dependence characterizes the equili- 
brium positions of the dynamic system being considered to which, in the case of stability, the 
solution tends with time. In Fig. 3, these stable branches are plotted using bold lines. At small 
values of the shear rate (E c 0.95), the structural bonds in the fluid are not disrupted. A simple 
shear flow of a fluid with a high viscosity occurs in which there is no separation of the flow 
field into domain structures. If, for any reason whatsoever, the disruption of some of the 
structural bonds occurs at the initial instant of time, that is, S, I,,= S,. + 0, then those disrupted 
bonds are completely restored in the course of time, that is, S, I,,_= 0. 

When the shear rate E increases (E a 0.95) separation of the flow field into domain 
structures occurs, with the disruption of some of the bonds close to the moving wall. Here, the 
zeroth state S, = 0 loses stability with the production of a new equilibrium position S, #O 
which, in its turn as k increases still further, loses stability with the formation of the limit cycle. 
The range of oscillations in the magnitude of the dimensionless tangential stress (T”(b) and 
T&(E)) is shown in Fig. 3 by the dashed lines. The time average values of T accompanying 
these self-excited oscillations are shown in Fig. 3 by the thin solid line. 
When the shear rate is increased still further, the process of the successive doubling of the 
period of the self-excited oscillations occurs. This sequence of bifurcations involving the 
doubling of the period when E a E, = 1.52 passes into chaos. Analysis of the one-dimensional 
Lorentz mapping (Fig. 4) corresponding to this chaos shows that, in the system investigated, 
the transition to chaos occurs in accordance with the classical Feigenbaum scenario. This is 
also suggested by the fact that the values of the parameter G,, = hi, at which doubling of the 
period of the self-excited oscillations occurs, obey the Feigenbaum law [14] G,, -G_ = c/6”, 

Fro.3. F10.4. 
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where c is a constant (in the case considered, c=-6.54) and 6 is the universal Feigenbaum 
constant. 

K = 7-l ln(L(7)/L(O)) 

For stochastic behaviour to exist it is necessary that mixing conditions are satisfied which is 
ensured by the exponential divergence of the trajectories at each point of the attractor. The 
nature of this divergence may be evaluated by investigating the Kolmogorov entropy [7] which 
is defined by the expression 
where L(O) and L(z) are the distances between the two points in the phase space (X,, X2, S,, 
S,), respectively, at the initial instant of time and after a time period z. Calculations show that, 
in the course of time, the value of the Kolmogorov entropy reaches a positive stationary level 
K, = 0.057. 

When the shear rate is increased further I? > 1.67, a reverse cascade of the period doubling 
bifurcations occurs which, at E = 1.87, leads to the disappearance of self-excited oscillations 
with the formation of a stable equilibrium. This equilibrium is characterized by a high degree 
of disruption of the structural bonds close to the mobile wall of the domain. As k increases, 
the number of the disrupted bonds increases and asymptotically tends to its maximum value. 
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